MA 3232- Numerical Analysis Prerequisite Skills

The student wishing to take this course should possess the following minimal skills:

1. Calculus:

- a. Know the definition of *limit*, and be able to take the limit of a given expression.
- b. Give and use geometrical interpretations of the derivative and integral.
- c. Find, from memory, the derivatives of elementary functions such as sines, cosines, natural logarithms, exponentials, and polynomials.
- d. Find, using the sum, quotient, product, and chain rules, the derivatives of combinations or compositions of elementary functions.
 - e. Find, from memory, the integrals of elementary functions.
- f. Find, using substitution, change of variables, or the addition properties of the integral, the integrals of given combinations/compositions of elementary functions.
- g. State the definition of *convergence*, and use that definition to find the limit (if any exists) of a given infinite series/sequence.
- h. Find the Taylor Series expansion of a given function, and, using the remainder theorem, estimate the error when a function is approximated by a finite number of terms of that series.

2. Linear Algebra:

- a. Use matrix/vector notation to express the elements of a matrix, and to denote and find matrix sums, matrix products, partitioned matrices, systems of linear equations, etc.
- b. Solve by hand, using Gaussian elimination, a given system of up to four linear equations in four unknowns, and determine whether a unique solution exists.
 - c. Find by hand, the inverse of a given nonsingular matrix of size up to four by four.
- d. Find by hand, the eigenvalues and eigenvectors of a given matrix of size up to four by four.

3. Ordinary Differential Equations:

- a. Find the general solution to a given first order linear, separable, or exact ordinary differential equation (ODE).
- b. State the geometrical interpretation of initial condition for a first order ODE, and, given an appropriate initial condition, apply it to find a particular solution to a given ODE.
- c. Given a \mathbf{n}^{th} order scalar ODE, rewrite it in the form of an equivalent system of first order ODE's.

4. Computer Programming:

- a. Write programs including input/output operations, loops, conditional ("IF") statements, and calls to subroutines or function subprograms in MATLAB (preferred).
 - b. Be familiar with MAPLE.

Suggested References:

Calculus - **Calculus**, by Thomas/Finney Chapters 1-14

Linear Algebra - Elementary Linear Algebra w/ Applications, by Leon

Ordinary Differential Equations - **Elementary Differential Equations and Boundary Value Problems**, by Boyce and Di Prima:

Chapter 1-2

Zh - 11/03